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Abstract

We present a five-dimensional supersymmetric SU(5) theory in which the gauge
symmetry is broken maximally (i.e. at the 5D Planck scale M∗) on the same 4D
brane where chiral matter is localized. Masses of the lightest Kaluza-Klein modes for
the colored Higgs and X and Y gauge fields are determined by the compactification
scale of the fifth dimension, MC ∼ 1015 GeV, rather than by M∗. These fields’
wave functions are repelled from the GUT-breaking brane, so that proton decay
rates are suppressed below experimental limits. Above the compactification scale,
the differences between the standard model gauge couplings evolve logarithmically,
so that ordinary logarithmic gauge coupling unification is preserved. The maximal
breaking of the grand unified group can also lead to other effects, such as O(1)
deviations from SU(5) predictions of Yukawa couplings, even in models utilizing the
Froggatt-Nielsen mechanism.
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1 Introduction

The standard model of particle physics, described by the gauge group SU(3)⊗SU(2)⊗U(1)
is one of the most successful physical theories ever. Nonetheless, the standard model is
theoretically unsatisfying for a number of reasons. For instance, the instability of the
weak scale against radiative corrections has motivated the study of numerous theories,
including technicolor, supersymmetry and theories with additional dimensions.

While the gauge hierarchy may be the most compelling motivation for new physics,
there are additional reasons to consider theories with further structure. It was long ago
realized that the gauge group of the standard model could be embedded into a simple
group [1]. The appeal of this idea was substantiated by measurements of electroweak
observables which suggested that the values of the standard model gauge couplings unify
at a scale MGUT ∼ 1015 GeV [2].

As data became increasingly precise, it became apparent that the simplest grand
unified theory (GUT), minimal SU(5), predicted a value for sin2 θW that was incompatible
with observation. However, the combination of supersymmetry and grand unification [3]
has met with great success in predicting sin2 θW [4]. For these supersymmetric theories,
the GUT symmetry must be broken at a somewhat higher scale, MGUT ∼ 2 × 1016 GeV.

One smoking gun signal of grand unification is proton decay, which arises from di-
mension six operators generated by exchange of the X and Y gauge bosons, and, in
supersymmetric theories, from dimension five operators generated by colored Higgsino
exchange [5]. In supersymmetric GUTs, the dimension six operators typically do not
lead to observable proton decay, but the dimension five operators do, and place strong
limits on these theories [6]. Recently Ref. [7] studied the dimension five proton decay and
found that even large masses for the first-two generation sparticles cannot save minimal
supersymmetric SU(5). They found that successful gauge coupling unification requires
that the Higgs triplet mass fall in the range 1.1 × 1014 GeV ≤ MHC

≤ 9.3 × 1015 GeV.
However, even with decoupling of the superpartners, the limit from proton decay was
shown to require MHC

≥ 9.4 × 1016 GeV.
While additional field content may generate threshold effects to rectify this, in this

paper we propose an alternative possibility. We will embed a unified gauge theory into five
dimensions in which gauge and Higgs fields propagate in the additional dimension. We
will show that if the GUT is broken on a brane at a high scale (i.e., M∗, the Planck scale of
the five-dimensional theory), the wave functions of the gauge fields and Higgs triplets can
develop an approximate node on the brane, suppressing proton decay operators arising
from their exchange. We will show that the running above the compactification scale is
not only consistent with, but is in fact equivalent to ordinary four dimensional logarithmic
unification with the compactification scale identified as the mass of the Higgs triplet.

In doing so, we reformulate the question of the MGUT/MPl hierarchy because the
breaking occurs at the fundamental scale of the theory (which, in general, is still larger
than 1016 GeV). In its place we require a somewhat large hierarchy (O(100)) between the
Planck and compactification scales. The traditional GUT scale, 2×1016 GeV, is a derived
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scale in this framework: there is no new physics there. Because of the O(1) breaking of the
grand unified group on the brane, we will also easily understand deviations from SU(5)
predicted relationships among Yukawa couplings.

2 Framework

We consider a 5D supersymmetric SU(5) theory with the fifth dimension compactified on
an S1/Z2 orbifold (in section 6 we will consider the possibility of larger gauge groups).
The bulk exhibits N=1 supersymmetry in five dimensions, which translates into an N=2
supersymmetry in four dimensions. The fields that propagate in the bulk are contained
in a gauge supermultiplet and two Higgs hypermultiplets transforming as 5 and 5 under
SU(5). Under the 4D N=1 supersymmetry preserved after the orbifold compactification,
the gauge supermultiplet decomposes into a vector superfield V and an associated chiral
adjoint Φ. The two hypermultiplets yield four chiral multiplets H5, Hc

5, H5 and Hc
5
. (H5

and Hc
5

transform as 5 under the SU(5), while Hc
5 and H5 as 5.) Under the orbifold Z2,

which flips the sign of the fifth coordinate (y → −y), the various superfields transform as

H5,5 −→ H5,5 Hc
5,5 −→ −Hc

5,5

V −→ V Φ −→ −Φ, (1)

which leaves zero modes only for the MSSM fields and their GUT counterparts.
The S1/Z2 orbifold has fixed points at y = 0 and y = πR. We take chiral matter to

be localized to the y = πR fixed point, along with an adjoint chiral superfield Σ. The
SU(5) symmetry is broken by the vacuum expectation value (vev) of Σ, which we assume
to have the form

〈Σij〉 =













2/5 0 0 0 0
0 2/5 0 0 0
0 0 2/5 0 0
0 0 0 −3/5 0
0 0 0 0 −3/5













〈Σ〉√
2
. (2)

We imagine that this breaking occurs at or near the five-dimensional Planck scale M∗,
which we assume to be much larger than the conventional GUT scale of 2 × 1016 GeV.
We will refer to the y = πR fixed point as the GUT-breaking brane.

Bulk fields even under the orbifold Z2 can couple directly to the fields on the GUT-
breaking brane. For instance, the Higgs fields can couple to the chiral matter fields T10

and F5 as (λuT10T10H5 +λdT10F5H5)δ(y−πR) in the superpotential. We also take there
to be a bare Higgs mass term, αH5H5δ(y − πR), as well as Higgs coupling to the GUT
breaking, (β/M∗)H5ΣH5δ(y − πR), in the superpotential. While it would be interesting
to study standard solutions to the doublet-triplet splitting problem in this framework,
we will not endeavor to do so here. Rather, we will simply tune these two contributions
against one another so that the SU(2) doublets Hu (⊂ H5) and Hd (⊂ H5) are nearly
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massless, while the colored triplets HC (⊂ H5) and HC (⊂ H5) end up with a large mass
term κHCHCδ(y − πR). Note that κ is a dimensionless parameter since HC and HC are
bulk fields and have dimension 3/2. Here, κ arises as a sum of terms (with higher order
terms potentially relevant in the strongly coupled theory). In addition to the bare mass
term, the H5ΣH5 term contributes. The natural size of this operator is restricted only
by perturbativity, with an upper bound ∼ 6π2 suggested by naive dimensional analysis
in higher dimensions [8].

2.1 Spectrum: Gauge fields

Once the gauge symmetry is broken, the X and Y bosons acquire brane-localized masses
through the interaction

L ⊃ δ(y − πR)g2
5〈Σ〉2Aµ,âA

µ
â (3)

where â indexes the broken generators of the group and g2
5 is the 5D gauge coupling,

with mass dimension −1. If we were to decompose each X and Y bulk vector field in
a naive Kaluza-Klein (KK) basis, we would estimate that the zero modes have mass
MV = g5〈Σ〉/

√
2πR = g4〈Σ〉. Such an estimate incorrectly assumes that the gauge boson

wave functions do not change appreciably in the presence of the large localized mass term.
To find the correct spectrum we must solve the differential equation

− ∂2
yAµ + δ(y − πR)g2

5〈Σ〉2Aµ = m2Aµ, (4)

which leads to KK masses MG
n given by [8, 9]

MG
n tan(MG

n πR) =
g2
5〈Σ〉2

2
, (5)

where n = 0, 1, 2, · · ·. For g2
5〈Σ〉2R ≫ 1 this equation gives a spectrum whose low-lying

levels are approximately MG
n = (n + 1/2)MC (with MC ≡ 1/R), whereas the usual KK

spectrum is mn = nMC . We see that the KK tower has been shifted up one half unit.
This is easy to understand intuitively. The gauge field picks up a mass of g4〈Σ〉 ≫ 1/R

if it does not avoid the brane. If it avoids the brane entirely, it does not “see” the mass
term, and picks up a smaller mass of 1/(2R) = MC/2 from a nontrivial profile of the wave
function in the extra dimension. The localized mass term acts merely to dynamically
assign the boundary condition that the wave functions should vanish at the GUT-breaking
brane. The boundary condition is not absolute, of course, so that the spectrum is not
precisely spaced according to (n + 1/2)MC . The value of the wave function at the GUT-
breaking brane goes as cos(MG

n πR) = (2n + 1)MC/(g2
5〈Σ〉2), and there are corrections to

the mass which go like −(2n + 1)M2
C/(πg2

5〈Σ〉2). Modes with masses near or above the
scale g2

5〈Σ〉2 become essentially degenerate with the ordinary KK tower, mn = nMC .
We have not broken supersymmetry, and thus the gauginos corresponding to the bro-

ken SU(5) generators have an identical spectrum. The KK towers for the gauge fields are
illustrated in Fig. 1a. For each unbroken SU(3)⊗SU(2)⊗U(1) (3-2-1) generator there is
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a massless vector multiplet and massive vector multiplets at MC , 2MC , 3MC , and so on.
For each broken (X, Y ) generator there is a tower of massive vector multiplets whose low
levels are offset from those of the 3-2-1 tower by MC/2, but whose higher levels relax into
alignment with the 3-2-1 tower. Although in Fig. 1a this transition to degeneracy has
already been achieved at 5MC , for the parameters of interest in our model, the relaxation
will actually occur much more gradually, over the span of ∼ g2

5〈Σ〉2/MC ∼ O(10 − 100)
KK levels. Note that for each X, Y massive vector multiplet but one there is a corre-
sponding 3-2-1 massive vector multiplet. The remaining one is paired with the massless
3-2-1 vector multiplet, indicating a larger total number of states in the X, Y tower relative
to the 3-2-1 tower. These excess states are the eaten Goldstone degrees of freedom from
the Σ multiplet. This means that above the scale ∼ g2

5〈Σ〉2 the KK towers of gauge fields
contributing to the renormalization group (RG) running are completely SU(5) symmetric
except that one chiral adjoint for each 3-2-1 vector multiplet is missing. These missing
degrees of freedom are provided by the physical Σ fields which remain after the Goldstone
components of Σ are eaten by the X, Y gauge multiplets. Therefore, above the scale
g2
5〈Σ〉2 and mΣ (the mass of physical Σ fields), the spectrum contributing to the running

is completely SU(5) symmetric.

2.2 Spectrum: Higgs fields

The spectrum analysis for the Higgs triplet fields HC and HC is somewhat different,
because the brane coupling κ is dimensionless, and hence the naive mass that the zero
modes would pick up by not avoiding the brane is just κMC which is comparable to MC

for order one κ. For our purposes, we will take κ to be a large parameter, roughly O(10),
so that the Higgs wave functions will in fact be strongly repelled from the brane. This size
for κ is quite consistent with the general features of the theory, which must be somewhat
strongly coupled in order to achieve order one top Yukawa and gauge couplings in spite
of the large radius.

The equations that determine the colored Higgsino spectrum are

− iσµ∂µHC − ∂yH
c

C − κδ(y − πR)HC = 0, (6)

− iσµ∂µHC − ∂yH
c

C − κδ(y − πR)HC = 0, (7)

− iσµ∂µH
c
C + ∂yHC = 0, (8)

− iσµ∂µHc
C

+ ∂yHC = 0. (9)

We can analyze these equations by writing the solutions as

H
(c)
C =

∑

n

η
(c)
C,n(x)g

(c)
C,n(y), (10)

H
(c)

C
=

∑

n

η
(c)

C,n
(x)g

(c)

C,n
(y), (11)
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(a)

0

1/R

2/R

3/R

4/R

5/R

V3−2−1

(0,−6,−9)

(V, Φ)3−2−1

(0,−4,−6)

(V, Φ)X,Y

(−10,−6,−4)

(b)

0

1/R

2/R

3/R

4/R

5/R

Hu, Hd

(3/5, 1, 0)

(Hu, H
c
u), (Hd, H

c
d)

(6/5, 2, 0)

(HC , Hc
C), (HC , Hc

C
)

(4/5, 0, 2)

Figure 1: Mass spectrum for the lowest KK modes of the gauge fields (a), and Higgs fields
(b) in our model. As explained in the text, the transition to degeneracy between the X, Y
and 3-2-1 towers occurs much more gradually than shown in (a). In (b), the limit of very
large κ is taken, so that the slight non-degeneracy between the colored hypermultiplet
pairs at each level is not resolved. In both (a) and (b), the triplet of numbers below
each tower corresponds to the beta function contribution (b1, b2, b3) that comes from each
level in that tower (for the colored Higgs, the contributions from the nearly-degenerate
hypermultiplet pairs are combined).
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where gC,n and gC,n are even under y → −y, while gc
C,n and gc

C,n
are odd. If we integrate

the first two of these equations in a region (πR − ǫ, πR + ǫ) where ǫ → 0, we obtain two
constraints,

ηc
C,n(x) =

κgC,n(πR)

2gc
C,n(πR − ǫ)

ηC,n(x), (12)

ηc
C,n

(x) =
κgC,n(πR)

2gc
C,n

(πR − ǫ)
ηC,n(x). (13)

Here, two constraints must be satisfied mode by mode. Let us define

γ(I,J),n =
κgI,n(πR)

2gc
J,n(πR − ǫ)

, (14)

where I, J take C, C, and identify both −iσµ∂µηC,n(x) = MH
n ηC,n(x) and −iσµ∂µηC,n(x) =

MH
n ηC,n(x). This allows us to rewrite Eqs. (6) – (9) as (neglecting singular terms)

MH
n gC,n(y) − γ(C,C),n∂yg

c
C,n(y) = 0, (15)

MH
n gC,n(y) − γ(C,C),n∂yg

c
C,n

(y) = 0, (16)

MH
n γ(C,C),ngc

C,n(y) + ∂ygC,n(y) = 0, (17)

MH
n γ(C,C),ng

c
C,n

(y) + ∂ygC,n(y) = 0, (18)

which give solutions

gC,C,n(y) = Nn cos(MH
n y), gc

C,C,n
(y) = Nn sin(MH

n y), (19)

with MH
n defined by

tan2(MH
n πR) =

κ2

4
. (20)

Thus, the KK masses for the colored Higgs are given by

MH
n =

1

R

(

n +
arctan(κ/2)

π

)

, (21)

where n runs from negative infinity to positive infinity (the physical masses are given by
the absolute value of MH

n ). For large κ, arctan(κ/2) ≃ π/2, so MH
n ≃ (n + 1/2)MC, and

the masses fall into nearly degenerate pairs, (MH
n , MH

−n−1). Note that, in contrast to the
case of the gauge fields, even for high values of n, the triplet Higgsinos do not become
degenerate with the doublet Higgsinos.

Supersymmetry fixes the masses and couplings of the Higgs scalars to be the same
as for the Higgsinos. The KK towers for the Higgs fields are shown in Fig. 1b. The
doublet spectrum consists of a pair of massless N = 1 chiral multiplets, and pairs of
exactly degenerate hypermultiplets at MC , 2MC , 3MC , and so on. For large κ, the triplet
spectrum consists of nearly degenerate pairs of hypermultiplets at MC/2, 3MC/2, 5MC/2,
and so on. In Fig. 1b, the non-degeneracy between these pairs is not resolved.
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3 Differential running

A crucial question in our model is how the gauge couplings evolve above the compactifi-
cation scale. To address this question, it is useful to focus on the “differential running”,
i.e., the non-uniform evolution of the gauge couplings. Above MC/2 a whole tower of
modes contributes to the evolution of g1, g2 and g3. However, we should emphasize that
this scenario does not employ power law unification. In contrast with Ref. [10], the over-
whelming power-law contribution to the running above MC/2 is SU(5) universal, so it is
useful to focus only on the quantities which distinguish the couplings and lead to non-
uniform evolution above MC/2. For instance, the matter fields fall into complete SU(5)
multiplets so their effects only change the coupling value at unification, but do not in-
fluence whether and at what scale the couplings unify. In contrast, the presence of the
Higgs doublets leads to non-uniform running. We will see shortly that above MC/2, the
differential running arises from a sum of a large number of threshold effects.1

Let us define the scale-dependent quantities

δi(µ) ≡ α−1
i (µ) − α−1

1 (µ), (22)

with δ1 vanishing trivially. The evolution of δi(µ) above MC/2 (but below mΣ) takes the
form

δi(µ) = δi(MC/2) − 1

2π
(RH

i (µ) + RG
i (µ)), (23)

where RH
i (µ) represents contributions arising from Higgs loops and RG

i (µ) represents
contributions arising from gauge loops. Contributions from matter loops vanish because
they contribute universally to the running. Using the known spectra for the various KK
towers and their beta function contributions (shown in Fig. 1), we can calculate these
quantities. For the Higgs contributions we find

RH
2 (µ) =

2

5
log

(

µ

MC/2

)

+
4

5

∑

0<nMC<µ

log

(

µ

nMC

)

− 2

5

∑

|MH
n |<µ

log

(

µ

|MH
n |

)

, (24)

RH
3 (µ) = −3

5
log

(

µ

MC/2

)

− 6

5

∑

0<nMC<µ

log

(

µ

nMC

)

+
3

5

∑

|MH
n |<µ

log

(

µ

|MH
n |

)

. (25)

Here the MH
n are the colored Higgs masses given in Eq. (21). Recall that there are actually

two slightly non-degenerate |MH
n | near each explicitly shown colored Higgs level in Fig. 1b.

For the gauge contributions we have

RG
2 (µ) = −6 log

(

µ

MC/2

)

− 4
∑

0<nMC<µ

log

(

µ

nMC

)

+ 4
∑

MG
n <µ

log

(

µ

MG
n

)

, (26)

1 The threshold correction from KK towers are also discussed in the context of power-law unification
[11] and orbifold breaking of the unified gauge symmetry [12].
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RG
3 (µ) = −9 log

(

µ

MC/2

)

− 6
∑

0<nMC<µ

log

(

µ

nMC

)

+ 6
∑

MG
n <µ

log

(

µ

MG
n

)

, (27)

where MG
n are the X, Y vector multiplet masses, given by the solutions to Eq. (5).

3.1 Higgs contributions

The running of δi(µ) is given by

dδi

dµ
= − 1

2π

(

dRH
i (µ)

dµ
+

dRG
i (µ)

dµ

)

. (28)

Let us consider the Higgs and gauge contributions to this running separately, starting
with the Higgs loops first. We have

dRH
2

dµ
=

1

5µ

[

(# of doublets with mass < µ) − (# of triplets with mass < µ)
]

, (29)

and

dRH
3

dµ
= − 3

10µ

[

(# of doublets with mass < µ) − (# of triplets with mass < µ)
]

. (30)

Here we mean the number of doublet and triplet chiral superfields: there are two massless
doublets, four triplets with mass ≃ MC/2, four doublets with mass MC , and so on.

Both of the above expressions have the expected 1/µ characteristic of logarithmic
running, but have coefficients which average out to zero. Below MC/2 only the massless
Hu and Hd doublets contribute, so RH

2 (RH
3 ) runs in the positive (negative) direction. At

MC/2 we encounter four triplet chiral superfields and RH
2 (RH

3 ) now runs in the negative
(positive) direction. The directions reverse again when we gain four doublets at MC , and
again at 3MC/2 when we gain another four triplets. These threshold effects continue,
but become increasingly negligible. Taking the triplet masses to be (n + 1/2± δ)MC , the
threshold effects from the states between nMc and (n + 1)MC are proportional to

log

(

Λ

nMC

)

+ log

(

Λ

(n + 1)MC

)

− log

(

Λ

(n + 1/2 + δ)MC

)

− log

(

Λ

(n + 1/2 − δ)MC

)

= log

(

(n + 1/2 + δ)(n + 1/2 − δ)

n(n + 1)

)

(31)

which vanishes as (1/4 − δ2)/n2 for large n.2

We conclude that the differential running due to the Higgs fields dies off quickly above
the compactification scale. Thus the total Higgs contribution to the running between

2Here we use the step-function approximation for RG running. However, had we used a Jacobi ϑ

function as in Ref. [10], we would still find the high mass threshold effects to be negligible.
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MC/2 and a high scale such as mΣ or g2
5〈Σ〉2 is essentially independent of the high scale.

Taking the pairs of triplet hypermultiplets to be exactly degenerate, we find that for high
scales,

RH
2 = −2

5

(

log

(

MC

MC/2

)

− log

(

3MC/2

MC

)

+ log

(

2MC

3MC/2

)

− log

(

5MC/2

2MC

)

+ . . .

)

= −2

5
log
(π

2

)

, (32)

and similarly,

RH
3 =

3

5
log
(π

2

)

. (33)

Note that the ratio RH
2 /RH

3 = −2/3 is the same as one would have calculated by including
the contributions from the massless doublets alone. This fact will be important when we
compare with the running in 4D minimal SU(5) in section 3.3.

3.2 Gauge contributions

In contrast to the Higgs threshold effects, those arising from gauge field loops do not
quickly die off. In fact, we will see that these effects add up to an effective logarithmic
running all the way up to mΣ or g2

5〈Σ〉2.
The definitions we have used for RG

i are very convenient for making connection to or-
dinary, four-dimensional running. In particular, α1 receives no gauge contribution below
the GUT scale in four-dimensional theories, and likewise here RG

1 will not receive contri-
butions to differential running. RG

2 and RG
3 , on the other hand, will receive corrections

above the compactification scale.
Referring to Eqs. (26) and (27), we see that the quantities RG

i are proportional to the
quadratic Casimir coefficients C2(G) of the gauge groups. Thus, we can write the gauge
contributions as

RG
i (µ) = −C2(Gi)∆(µ), (34)

where C2(G) is 2 for SU(2) and 3 for SU(3). Furthermore, we have

d∆(µ)

dµ
=

1

µ

[

3 + 2
(

# of (V , Φ)3−2−1 levels below µ
)

− 2
(

# of (V , Φ)X ,Y levels below µ
)]

.

(35)
The notation here is as in Fig. 1a. Note that in contrast to the case for the Higgs
multiplets, here the coefficient multiplying 1/µ does not average to zero. Rather, for low
modes (such that MG

n ≃ (n + 1/2)MC), the coefficient is 3 up to MC/2, 1 between MC/2
and MC , then 3 again until 3MC/2, and so on. For the higher mass modes, such that the
X, Y and 3-2-1 multiplets are nearly degenerate, the coefficient becomes fixed at 1.

If the running were coming entirely from the massless 3-2-1 vector multiplet, the
coefficient multiplying 1/µ would be 3, so we see that above the compactification scale,
the differential running due to the gauge loops is slowed somewhat relative to the ordinary

9



δ3

δ2

δ1

µMZ MC MGUT g2
5〈Σ〉2

Figure 2: The qualitative picture for gauge coupling unification in our 5D model. We
define δi(µ) ≡ α−1

i (µ) − α−1
1 (µ). The conventional unification scale MGUT ∼ 2 × 1016

GeV is a derived scale rather than a physical one. Here we assume mΣ < g2
5〈Σ〉2, so that

unification is achieved near g2
5〈Σ〉2.

logarithmic evolution in 4D. Note that even once the X, Y and 3-2-1 multiplets become
degenerate, the differential running continues. In this regime, the running is due entirely
to the eaten Goldstone states contained in the X, Y KK tower. The differential running
stops completely only once we reach the scale mΣ, when the rest of the Σ degrees of
freedom begin to propagate in the loops.3

The qualitative picture for gauge coupling unification in our model is depicted in Fig. 2.
Above the compactification scale, the non-uniform evolution of the gauge couplings slows,
so that unification occurs at a larger scale than usual. The unification scale will essentially
be the larger of mΣ and g2

5〈Σ〉2. Next we will verify that this picture is in fact correct,
and we will make more precise the connection to unification in ordinary minimal SU(5)
in 4D.

3.3 Unification and minimal SU(5)

Up to this point we have discussed the differential evolution of the couplings above the
compactification scale, but have not explicitly demonstrated that the couplings in our
model unify in a manner consistent with electroweak scale measurements of the 3-2-1
couplings. Here we will demonstrate that, at one loop, the successful prediction of sin2 θW

3Or, if mΣ happens to be below the the scale at which the X, Y and 3-2-1 towers become degenerate
(determined by g2

5
〈Σ〉2), the differential running due to the Goldstone degrees of freedom ceases above

mΣ, but the total differential running does not die off until a scale ∼ g2
5〈Σ〉2.
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of minimal SU(5) with MHC
< MGUT [13] is equivalent to the successful prediction of

sin2 θW in this model with MC ∼ MHC
. That is, the fact that minimal SU(5) with a

triplet Higgs below the GUT scale can give sin2 θW correctly guarantees that this model
can do as well.

To see this we must reexamine the running of gauge couplings in four-dimensional,
minimal SU(5). Above the Higgs triplet mass, the gauge couplings evolve as

α−1
i (µ) = α−1

i (M
(4d)
HC

) − 1

2π
(7 − 3C2(Gi)) log

(

µ

M
(4d)
HC

)

. (36)

To make connection with our discussion of differential running in the five-dimensional
theory, we subtract off a universal piece α−1

1 from each gauge coupling, and we find

δ4d
i (MGUT) − δ4d

i (M
(4d)
HC

) =
3

2π
C2(Gi) log

(

MGUT

M
(4d)
HC

)

, (37)

where MGUT is the conventional GUT scale ∼ 2 × 1016 GeV. Below the scale M
(4d)
HC

, the
running of the gauge couplings in the 5D theory is the same as for the 4D theory. Thus, if
we can demonstrate that δ5d

i (µ)− δ5d
i (M

(4d)
HC

) has the same form as Eq. (37), we will have
shown that successful unification in ordinary minimal SU(5) implies successful unification

in our model. Here the superscript in M
(4d)

HC is to emphasize that it is the colored Higgs
mass that gives successful unification in the 4D theory that is meant, rather than the
lightest KK mode of the colored Higgs in the 5D theory.

The Higgs contributions to δ5d
i (µ) − δ5d

i (M
(4d)
HC

) are

− 1

2π
ci log

(

MC/2

M
(4d)
HC

)

+
1

2π
ci log

(π

2

)

, (38)

where (c2, c3) = (2/5,−3/5). The first term comes from the ordinary running due to Hu

and Hd below MC/2, and the second term is the finite running above MC/2 found in
Eqs. (32) and (33). Since the two terms are both proportional to ci, we see that the Higgs

contribution to the differential running in 4D (which takes place entirely below M
(4d)
HC

)
is emulated in 5D with the proper choice of compactification scale. Had the differential
running due to the Higgs multiplets turned off right at MC/2, we would simply identify

MC/2 = M
(4d)
HC

. Because we find a small amount of differential running above MC/2, we

instead identify MC/π = M
(4d)
HC

. We expect small additional corrections to this quantity
from further finite one-loop effects, but the precise value MC/π is not important: what

matters is that, given any value of M
(4d)
HC

that leads to a successful prediction of sin2 θW in

the 4D theory, there is a value for MC (∼ πM
(4d)
HC

) such that the total differential running
due to Higgs loops in the 5D theory will be the same as in the 4D theory.

11



Having chosen this value for MC , δ5d
i (µ)−δ5d

i (M
(4d)
HC

) arises entirely from loops of gauge
and physical Σ fields:

δ5d
i (µ)−δ5d

i (M
(4d)
HC

) =
3

2π
C2(Gi) log

(

MC/2

M
(4d)
HC

)

+
1

2π
C2(Gi)

{

∆(µ) − θ(µ − mΣ) log

(

µ

mΣ

)}

,

(39)
where the first term comes from the ordinary 4D running below MC/2, and two terms in
the curly bracket represent the contributions from gauge KK towers and physical Σ fields,
respectively (for the parameterization of the gauge contribution, see Eq. (34)). We find
that this has the same form as Eq. (37), with the required identification

{

∆(µ) − log

(

µ

mΣ

)}

µ→∞

= 3 log

(

MGUT

MC/2

)

. (40)

Note that ∆(µ) → log(µ/M) under µ → ∞, where M is some mass scale which is
a function of MC and g2

5〈Σ〉2, so that the quantity in the left-hand side has a well-
defined value which is a function of MC , g2

5〈Σ〉2 and mΣ. (g2
5〈Σ〉2 is the scale at which the

differential running almost ceases in the 5D theory.)
We see that the form of differential running above the Higgs triplet mass in minimal

SU(5) is precisely what arises from threshold effects in the case of the five dimensional
theory. This holds irrespective of whether the step-function approximation of fields in the
RG running is very good or not. For instance, had we used the full one-loop calculation
as in Ref. [10], all gauge contributions would still be proportional to C2(G). At one loop,
the structure of unification is equivalent to that of minimal SU(5). That this model can
successfully yield sin2 θW is no more nor less remarkable than in four-dimensional unified
theories. The remarkable feature is that the grand unified group is broken “maximally”,
at a scale well above the masses of the lightest X and Y gauge bosons. This feature
changes the predictions of the theory, as we will see in sections 4 and 5.

Let us make one final comment regarding the differential running of the couplings.
In a sense, its logarithmic (as opposed to power law) behavior is natural. The power
law evolution is characteristic of the bulk (i.e., five dimensional) nature of the gauge
coupling. In contrast, the SU(5) breaking occurs strictly on a brane. Simply by Lorentz
invariance, the brane breaking cannot contribute to the bulk coupling, but instead should
just generate a brane contribution to the gauge kinetic term. Consequently, we would not
a priori have expected the effects of this SU(5) breaking to exhibit a power law behavior.

3.4 Scales

Now that we have shown the direct correspondence between the differential running in our
model to that of ordinary minimal SU(5), we can determine the scale at which successful
unification occurs. In other words, given a compactification scale MC , we can find the
values of mΣ and 〈Σ〉 that give sin2 θW correctly.
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Figure 3: Values of MΣ and g2
5〈Σ〉2 which generate the same threshold effect above MC as

is generated in minimal supersymmetric SU(5) between MHC
and MGUT. The dashed line

corresponds to MC = 6×1014 GeV, while the solid line corresponds to MC = 6×1015 GeV.
To calculate these lines we have used first-order solutions in (g2

5〈Σ〉2R)−1 for the X and
Y masses.

The allowed compactification scales are already known: these are related to the allowed
values of MHC

in minimal SU(5) by MC ∼ πMHC
. Then we need only to find the

values of mΣ and 〈Σ〉 for which Eq. (40) holds. These values are indicated in Fig. 3
for compactification scales between 6 × 1014 GeV and 6 × 1015 GeV (corresponding to
MHC

∼ 2 × 1014 GeV and 2 × 1015 GeV). For these compactification scales, the 5D
Planck scale M∗ is (1 ∼ 3) × 1017 GeV, and Fig. 3 shows that the GUT-breaking scale
can be at or near this scale and the unification of three gauge couplings can be attained
below M∗ depending on the parameters of the model.4 In the parameter region where
the field theoretic unification works, the ratio of the cutoff to the compactification scales
is O(10 − 100), and no gauge or Yukawa couplings become nonperturbative below the
cutoff scale. Thus, our one-loop treatment of the running is well justified. We also find
that 〈Σ〉 must be somewhat smaller than M∗ in this parameter region. This is consistent
with the observation that the theory is more or less strongly coupled at the scale M∗ to
have O(1) Yukawa and gauge couplings in 4D; if the theory is strongly coupled at M∗,
〈Σ〉 is naturally 〈Σ〉 ≃ M∗/(4π), since the superpotential giving the vev of Σ scales like
M∗Σ

2 + 4πΣ3. Even then, however, the Σ couples to the other fields in the combination
of 4πΣ/M∗, so that various operators feel order one GUT breaking, since 4π〈Σ〉/M∗ ∼ 1.
Therefore, we treat as if Σ has a vev of order M∗ in the following discussions, although
all the arguments also apply in the strongly coupled case, 〈Σ〉 ≃ M∗/(4π).

4 If mΣ or g2
5
〈Σ〉2 is above the 5D Planck scale, the gauge unification is not completed in a field

theoretic regime. In this case, our field theoretic treatment is not fully trustable above M∗ and would
have some uncertainties coming from the cutoff scale physics.
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3.5 Brane operators

We finally comment on effects from brane operators like
∫

d2θ(Σ/M∗)
mWαWαδ(y − πR)

where m = 1, 2, · · · and Wα is the field strength superfield. Although it is possible that
these operators are somehow suppressed at the cut-off scale, from effective field theory
point of view it is generically expected that they are present with order one coefficients.
They give tree-level splitting of three gauge couplings for SU(3), SU(2) and U(1), and
could affect the previous analysis of the gauge coupling unification. In particular, since
we are considering 〈Σ〉 ≈ M∗, one might think that they give O(1) correction to sin2 θW .
However, we can expect that the effect of these operators are actually smaller by making
the following observations.

As an example, let us first consider the extreme case where all the interactions are
strongly coupled at the scale M∗. Then, the operators involving the field strength super-
field scale as

L5 =

∫

d2θ

[

M∗

24π3
WαWα + δ(y − πR)

1

16π2

4π〈Σ〉
M∗

WαWα + · · ·
]

, (41)

where 4π〈Σ〉/M∗ is an O(1) quantity. (Strictly speaking, 4π〈Σ〉/M∗ must be somewhat
smaller than 1 so that all higher dimensional operators involving (4π〈Σ〉/M∗)

m do not
equally contribute and make the theory unpredictable.) On integrating over y, the zero-
mode 4D gauge couplings g0 are given as

1

g2
0

∼ M∗R

12π2
+

1

16π2
. (42)

Here, the first and second terms are SU(5)-preserving and SU(5)-violating contributions,
respectively. Since we know that g0 ∼ 1, we have to take M∗R ∼ 12π2 in this strongly cou-
pled case. This shows that the SU(5)-violating contribution coming from brane operators
is suppressed by a factor of 1/(16π2) in this case.

In fact, the theory is not truly strongly coupled at the scale M∗ in the realistic case
discussed in previous sections so that the one-loop treatment of gauge coupling evolutions
is reliable. Nevertheless, the above argument applies more generically; the SU(5)-violating
brane contribution is small relative to the SU(5)-preserving bulk contribution due to the
large volume factor 2πRM∗. Thus, the correction to sin2 θW is expected to be small. We
will not discuss possible effects of the brane operators further, and assume that they are
negligible in the subsequent discussions.

4 Proton decay

One of the key signals of grand unification is proton decay. X and Y gauge boson exchange
generates dimension six proton decay operators in the low energy theory, and Higgsino
triplet exchange generates dimension five operators. One might expect that since the
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particles appear at a scale ∼ MC , this will be the suppression scale of the proton decay
operators. One interesting possibility offered by this framework is that the rate of proton
decay is not constrained by gauge invariance to be related to the strength of gauge and
Yukawa interactions in the usual way.

We have already noted that the dangerous particles have wave functions at the y = πR
fixed point that are small compared with those of their 3-2-1 or doublet counterparts. On
the other hand, there is a tower of states that can mediate proton decay, and we must
sum each contribution. In this section, we investigate proton decay operators generated
by exchanges of X, Y gauge bosons and colored Higgsinos, and show that the present
model can satisfy the constraints coming from experimental lower bounds on the proton
lifetime.

4.1 Dimension six operators

Dimension six proton decay operators arise from the exchange of X and Y gauge bosons.
The coupling of these bosons to fields on the brane is suppressed by a factor cos(MG

n πR).
Comparison with four-dimensional theories can be made by replacing

1

M2
X,Y

=⇒ 2
∞
∑

n=0

cos2(MG
n πR)

MG
n

2 , (43)

where MG
n are the masses of the X and Y gauge boson KK modes. These masses satisfy

Eq. (5), which allows us to approximate the sum as

∞
∑

n=0

4

g4
5〈Σ〉4 + M2

C(2n + 1)2
=

π tanh(πg2
5〈Σ〉2/2MC)

g2
5〈Σ〉2MC

. (44)

Thus, the “effective mass” of the X and Y bosons is ≈ g5〈Σ〉M1/2
C /(2π)1/2 = g4〈Σ〉. For

〈Σ〉 at or near the five dimensional Planck scale, this will typically be larger than MGUT,
although it is not required to satisfy experimental constraints. In any case, despite the
fact that the lightest X and Y gauge bosons have masses of only ∼ 1015 GeV, it is easy
to satisfy proton decay constraints coming from dimension six operators in this model.

4.2 Dimension five operators

Dimension five operators come from integrating out the Higgsino triplets. Again, we make
connection with the four dimensional theory by finding an effective triplet Higgsino mass
by taking the whole sum over KK modes. Here we make the replacement

1

MHC

=⇒
∞
∑

n=−∞

cos2(MH
n πR)

MH
n

, (45)
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where MH
n are the masses of the colored Higgs KK modes, given in Eq. (21). Using this

spectrum, we obtain the sum

∞
∑

n=−∞

(

4

κ2 + 4

)

1

nMC + MC arctan(κ/2)/π
=

8π

κ(κ2 + 4)MC

(46)

Thus, proton decay from dimension five operators is suppressed by a factor ∼ 8π/κ3

compared to the compactification scale. In ordinary minimal SU(5), proton decay limits
require MHC

> 9.4 × 1016 GeV, so for a compactification scale of MC = 2 × 1015 GeV,
we would need a κ parameter of ten to adequately suppress proton decay operators. This
leaves open the possibility that proton decay could be observed in future experiments.
However, for larger κ detection becomes increasingly unlikely.

4.3 Derivative operators

In addition to the ordinary Yukawa couplings between the Higgs and matter fields on
the brane, there can be derivative couplings of the conjugate Higgs fields to the matter
fields as well.5 These operators such as (ζuT10T10 ∂yH

c
5

+ ζdT10F5 ∂yH
c
5)δ(y − πR) can

lead to proton decay. Of course, coefficients ζu and ζd of these operators are not related
to the usual Yukawa couplings, λu and λd, by SU(5), so that their actual significance is
unknown. Furthermore, there is an ambiguity in what we mean by the derivative of the
conjugate field, which is not differentiable at the point y = πR. However, using Eqs. (6)
and (7), we can rewrite the coupling as

δ(y − πR)∂yH
c
C = δ(y − πR)

∑

n

(

MH
n gC,n(πR) − κ

2πR

∑

m

gC,n(πR)

)

ηC,n(x), (47)

where the summation over m arises from rewriting the δ-function as a sum of the KK
mode.

While we can compute proton decay diagrams involving these vertices, it is now ap-
parent that such diagrams have a strong dependence on how we cut off the sum of the
KK mode. If the cutoff is done near the fundamental scale, these diagrams can, at least
in principle, give comparable contribution to those involving the usual Yukawa couplings.
However, it is not entirely clear what the cutoff for these diagrams should be. In the case
where the brane is dynamical, the summation in the above operators are cut off at the
scale of the brane tension [14]. For couplings at the orbifold fixed point, which is not
dynamical and cannot fluctuate, it is unclear whether the cutoff is the fundamental scale
or a lower scale, such as the radion mass.

For our purposes here, we will not address these issues further. Since we cannot a priori
know the size of the couplings of these operators and their flavor structure, estimating the
resulting proton decay rate is already very uncertain. However, it is possible that such

5 We thank M. Graesser for bringing this to our attention.
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operators may provide an opportunity for detectable dimension five proton decay in the
near future.

5 Yukawa couplings

So far, we have a framework that looks like ordinary SU(5) except with suppressed proton
decay. While the breaking occurs at a scale near the 5D Planck scale M∗, the X, Y gauge
bosons are much lighter. Still, in a very real sense, the breaking of SU(5) is “maximal”,
which can manifest itself in deviations from SU(5) expectations. We here consider the
effects of such maximal GUT breaking on the fermion Yukawa couplings.

In the minimal SU(5), one important prediction is the unification of the Yukawa
couplings. A successful prediction of the theory is the unification of the bottom and
τ Yukawa couplings at the GUT scale [15]. However, it is well known that the SU(5)
relations fail in the lighter first-two generations. For instance, an SU(5) relation me/mµ =
md/ms fails by a factor of ten.6

In ordinary 4D SU(5) GUT, it has been suggested that the operators involving the Σ
field can correct this discrepancy [17]. However, this mechanism does not work in most
theories where the fermion mass hierarchy is explained by the Froggatt-Nielsen mechanism
[18]. In this mechanism, the matter fields carry generation dependent flavor U(1) charges
and the various Yukawa couplings are generated through the U(1) breaking spurion. This
is an attractive mechanism in that it not only suppresses the first-two generation Yukawa
couplings but also suppresses dangerous tree-level dimension five proton decay operators.
However, having employed this mechanism, the GUT-breaking operators involving 〈Σ〉 can
modify SU(5) mass relations only by an amount suppressed by a factors of MGUT/MPl,
which is too small to accommodate order one deviations suggested by the observed quark
and lepton masses.7

In the present model, on the other hand, there is no suppression of higher dimensional
operators involving GUT-breaking effects, since 〈Σ〉 is near the cut-off scale M∗. In this
sense, fields living on the GUT-breaking brane see the GUT broken maximally, and their
Yukawa couplings need not respect the SU(5) symmetry. Thus, the failure of SU(5) to
describe (me/mµ)/(md/ms) seems quite natural. In this framework, however, the success
of the λb-λτ unification must be viewed as an accident, unless there is a reason why the
coupling of Σ to the third generation is somewhat suppressed.

6One may be able to correct this prediction by means of contributions from supersymmetry-breaking
A terms to the Yukawa couplings [16].

7One possible way to evade this conclusion is to assign a non-vanishing Froggatt-Nielsen charge to the
Σ field [19].
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6 Larger gauge groups

Up to this point, we have restricted our attention to a scenario with SU(5) gauge group,
but it is interesting to consider larger gauge groups. One possible difference comes from
additional matter fields required by larger gauge groups. For instance, in SO(10) there is
an additional state, right-handed neutrino. If this additional field acquires a mass around
the cut-off scale M∗ from SO(10) breaking, then there will be a running effect between
MC and M∗ which is not SO(10) universal.

It is, however, important that this does not affect our previous analyses; the 3-2-1
unification still works as in section 3 even in the case of SO(10). The additional Higgs
states do not contribute to differential running above MC , and the threshold effects are
proportional to 3-2-1 β-functions. This means that we can have larger gauge groups broken
all the way to 3-2-1 around the cut-off scale. In the SO(10) case, this may result in too
large right-handed neutrino masses to give an appropriate mass scale for atmospheric
oscillations [20] through see-saw mechanism [21]. Then, we may need somewhat small
coefficient in front of the operator which gives right-handed neutrino masses or have
to resort to other ways to generate neutrino masses within supersymmetric models, for
instance, though R-parity violation [22] or supersymmetry breaking [23].

7 Conclusions

The possibility that the standard model gauge group is merely a subgroup of a larger,
simple group is an attractive one. Unfortunately, the simplest version of supersymmetric
SU(5) predicts proton decay at rates incompatible with experiment.

We have demonstrated that the incorporation of just one new ingredient — an ad-
ditional dimension in which gauge and Higgs fields propagate — brings about crucial
changes relative to ordinary GUTs. The couplings of the lightest X and Y bosons are
no longer directly linked through gauge symmetry to those of the lightest 3-2-1 bosons,
and the couplings of the lightest Higgs triplets are no longer directly linked to those of
the Higgs doublets. The strong breaking of the GUT symmetry “pushes away” the wave
functions of these states, suppressing the generated proton decay below experimental lim-
its, all while retaining ordinary, logarithmic unification. Such features seem special to a
five dimensional theory, incapable of reproduction in simple four dimensional theories.

The presence of extra dimensions of this size has been motivated previously as a
means to resolve the supersymmetric flavor problem [24]. Our GUT-breaking picture
can nicely fit into this framework of supersymmetry-breaking mediation. For instance, if
supersymmetry is broken at y = 0 fixed point by F -term vev of singlet or non-singlet field,
it naturally realizes the scenarios of Refs. [25] and [26], respectively. The incorporation
of our GUT picture within these scenarios may give interesting signatures, since we now
have one more piece of information about parameters of the model; the compactification
radius is determined by the gauge coupling unification. We leave an investigation of
detailed phenomenology for future work.
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To summarize, the framework we have described is very simple, but can describe
various observed features such as gauge coupling unification, lack of unification in Yukawa
couplings, the absence of proton decay, and so on. It will be interesting to add non-minimal
structure to the model as a means of deriving experimental signatures.
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